前 言
为什么写这本书
随着大数据时代的演进,越来越多的企业在搜集数据的同时,也开始关注并重视数据分析与挖掘的价值,因为他们正尝到这项技术所带来的甜头。例如,通过该技术可以帮助企业很好地认识其用户的画像特征,为用户提供个性化的优质服务,进而使用户的忠诚度不断提升;通过该技术提前识别出不利于企业健康发展的“毒瘤”用户(如黄牛群体、欺诈群体等),进而降低企业不必要的损失;通过该技术可以为企业实现某些核心指标的判断和预测,进而为企业高层的决策提供参考依据等。企业对数据分析与挖掘技术的重视就意味着对人才的重视,这就要求希望或正在从事数据相关岗位的人员具备该技术的理论知识和实战能力。
Python作为大数据相关岗位的应用利器,具有开源、简洁易读、快速上手、多场景应用以及完善的生态和服务体系等优点,使其在数据分析与挖掘领域中的地位显得尤为突出。基于Python可以对各种常见的脏数据完成清洗、绘制各式各样的统计图形,并实现各种有监督、无监督和半监督的机器学习算法的落地,在数据面前做到游刃有余,所以说Python是数据分析与挖掘工作的不二之选。根据多家招聘网站的统计,几乎所有的数据分析或挖掘岗位都要求应聘者掌握至少一种编程语言,其中就包括Python。
纵观国内的图书市场,关于Python的书籍还是非常多的,它们主要偏向于工具本身的用法,如关于Python的语法、参数、异常处理、调用以及开发类实例等。但是基于Python的数据分析与挖掘书籍并不是特别多,关于这方面技术的书籍更多的是基于R语言等工具。本书将通过具体的实例讲解数据的处理和可视化技术,同时也结合数据挖掘的理论知识和项目案例讲解10种常用的挖掘算法。
2015年9月,笔者申请了微信公众号,取名为“数据分析1480”,目前已经陆续更新了近200篇文章。一方面是为了将自己所学、所知记录下来,作为自己的知识沉淀;另一方面是希望尽自己的微薄之力,将记录下来的内容分享给更多热爱或从事数据分析与挖掘事业的朋友。但是公众号的内容并没有形成系统的知识框架,在王金柱老师的鼓励和支持下才开始了本书的写作,希望读者能够从中获得所需的知识点。
本书的内容
本书一共分为三大部分,系统地介绍数据分析与挖掘过程中所涉及的数据清洗与整理、数据可视化以及数据挖掘的落地。
第一部分(第1~3章)介绍有关数据分析与挖掘的概述以及Python的基础知识,并通过一个有趣的案例引入本书内容的学习。本部分内容可以为初学Python的朋友奠定基础,进而为后续章节的学习做准备。
第二部分(第4~6章)涉及numpy模块的数值计算、Pandas模块的数据清洗与整理以及Matplotlib模块的可视化技术。本部分内容可以为数据预处理过程中的清洗、整理以及探索性分析环节提供技术支撑。
第三部分(第7~16章)一共包含10种数据挖掘算法的应用,如线性回归、决策树、支持向量机、GBDT等,使用通俗易懂的术语介绍每一个挖掘算法的理论知识,并借助于具体的数据项目完成算法的实战。本部分内容可以提高热爱或从事数据分析相关岗位朋友的水平和技能,也可以作为数据挖掘算法落地的模板。
本书每一章都有对应的数据源和完整代码,代码均包含具体的中文注释,读者可以在笔者的github网站https://github.com/SnakeLiu/Python-Data-Aanalysis-and-Miner下载,或者在百度网盘https://pan.baidu.com/s/18REQ_J057i7KL7ivBCX-cw (密码:xt4i)下载。
勘误和支持
由于笔者水平有限,书中难免会出现不当的地方,欢迎专家和读者朋友给予批评和指正。可以通过下方的途径联系并反馈建议:
? 即时通信:添加个人微信(lsx19890717)或者QQ(1029776077),及时反馈问题。
? 公众号:添加个人微信公众号“数据分析1480”,可参与后台互动。
? 电子邮箱:发送邮件至
[email protected]。
致谢
特别感谢清华大学出版社的王金柱老师,感谢他的热情相邀和宝贵建议,是他促成了本书的完成,同时他专业而高效的审阅也使本书增色不少。感谢参与本书封面设计的王翔老师、责任校对闫秀华老师,以及其他背后默默支持的出版工作者,在他们的努力和付出下,保证了本书的顺利出版。
最后,感谢我的家人和朋友,尤其是我的妻子许欣女士,是她在我写书期间把家里的一切整理得有条不紊,对我的照顾更是无微不至,才使我能够聚精会神地完成本书全部内容的撰写。
刘顺祥(Sim Liu)
2018年8月于上海