书籍作者:张雨萌 | ISBN:9787301306017 |
书籍语言:简体中文 | 连载状态:全集 |
电子书格式:pdf,txt,epub,mobi,azw3 | 下载次数:2006 |
创建日期:2021-02-14 | 发布日期:2021-02-14 |
运行环境:PC/Windows/Linux/Mac/IOS/iPhone/iPad/Kindle/Android/安卓/平板 |
第1章 坐标与变换:高楼平地起
1.1 描述空间的工具:向量 2
1.2 基底构建一切,基底决定坐标 13
1.3 矩阵,让向量动起来 18
1.4 矩阵乘向量的新视角:变换基底 27
第2章 空间与映射:矩阵的灵魂
2.1 矩阵:描述空间中的映射 34
2.2 追因溯源:逆矩阵和逆映射 42
2.3 向量空间和子空间 50
2.4 老树开新花,道破方程组的解 55
第3章 近似与拟合:真相最近处
3.1 投影,寻找距离最近的向量 62
3.2 深入剖析最小二乘法的本质 69
3.3 施密特正交化:寻找最佳投影基 74
第4章 相似与特征:最佳观察角
4.1 相似变换:不同的视角,同一个变换 80
4.2 对角化:寻找最简明的相似矩阵 85
4.3 关键要素:特征向量与特征值 89
第5章 降维与压缩:抓住主成分
5.1 最重要的矩阵:对称矩阵 96
5.2 数据分布的度量 100
5.3 利用特征值分解(EVD)进行主成分分析(PCA) 103
5.4 更通用的利器:奇异值分解(SVD) 111
5.5 利用奇异值分解进行数据降维 116
第6章 实践与应用:线代用起来
6.1 SVD在推荐系统中的应用 124
6.2 利用SVD进行彩色图片压缩 133
第7章 函数与复数域:概念的延伸
7.1 傅里叶级数:从向量的角度看函数 145
7.2 复数域中的向量和矩阵 151