基于RISC-V的人工智能应用开发
书籍作者:廖义奎 |
ISBN:9787519843892 |
书籍语言:简体中文 |
连载状态:全集 |
电子书格式:pdf,txt,epub,mobi,azw3 |
下载次数:8648 |
创建日期:2021-02-14 |
发布日期:2021-02-14 |
运行环境:PC/Windows/Linux/Mac/IOS/iPhone/iPad/Kindle/Android/安卓/平板 |
内容简介
《基于RISC-V的人工智能应用开发》较全面地介绍人工智能芯片K210的特点和应用开发,深入浅出地讲解人工神经网络、卷积神经网络的应用设计,特别是全面和深入分析YOLO网络与目标检测方法,并把YOLO网络应用于K210之中。
第一部分为RISC-V及人工智能芯片,主要介绍RISC-V构架人工智能芯片K210应用开发,包括RISC-V构架及人工智能芯片K210介绍、输入,输出、串口通信、定时器与日历、音频输入/输出接口、显示屏驱动、摄像头数据采集、外部存储器、K210的WS2812驱动、K210的ESP8266驱动以及K210的MicroPython编程。第二部分为深度学习,主要介绍Keras及TensorFlow Lite应用开发,包括Keras人工神经网络应用设计、Keras卷积神经网络及深度学习、TensorFlow Lite安卓应用开发。第三部分为YOLOv3目标检测,主要介绍YOLOv1/v2/v3深度卷积神经网络目标检测应用开发,包括YOLO网络与目标检测基础、YOLO网络样本标注与训练、YOLO网络结构分析、YOLO网络在安卓中的应用。第四部分为YOLO和K210综合应用,主要介绍K210卷积神经网络应用实例,包括K210人工神经网络应用设计、K210卷积神经网络应用设计、K210神经网络处理器工作原理分析、K210神经网络处理器应用实例。
《基于RISC-V的人工智能应用开发》适合于从事物联网、人工智能、嵌入式系统以及电子技术应用开发初学者作为参考资料,或者作为本专科物联网、人工智能、嵌入式系统、单片机等相关课程的教材,也适合于作为课程设计、毕业设计以及各类专业竞赛指导教材。
作者简介
廖义奎,主要研究方向是物联网、嵌入式系统及智能控制,长期从事自动控制、电子产品及计算机软件的研究与开发工作,出版著作独著9部,合著1部,发表与合作发表论文30篇,申请发明专利5项,实用新型专利5项,软件著作权7项。
编辑推荐
介绍了RISC-V构架人工智能芯片K210的特点和应用开发方法。本书的编写方法基本上是每一章都首先介绍应用开发实例,从Z简单的实例到较复杂的应用循序渐进地介绍;然后在每一章的后半部分再深入介绍其低层的工作原理。
前言
前言
RISC-V 处理器架构的广泛应用是 CPU(Central Processing Unit,中央处理器)一个重要发展趋势,大量的国内企业已经或者计划推出这类处理器芯片。RISC-V 指令集是基于精简指令集计算(RISC)原理建立的开放指令集架构(ISA),RISC-V 指令集完全开源,设计简单,易于移植 UNIX/Linux 一类系统,模块化设计工具链完整得到了产业界和社区的广泛支持。
人工智能芯片广泛的应用是人工智能的一个重要发展趋势,今后人工智能的运算将越来越多地在人工智能芯片上完成。人工智能芯片主要是神经网络处理器(NPU),是为深度学习而生的专业芯片,其表现大大优于传统 GPU(Graphics Processing Unit,图形处理器)、GPU(Graphics Processing Unit,图形处理器)和 DSP(Digital Signal Processing,数字信号处理),是未来人工智能应用的重要发展方向。
本书介绍的嘉楠勘智 K210 人工智能芯片,是 RISC-V 与神经网络处理器的有机融合,已经在市场上得到迅速的推广与应用。K210 内含双核 64 位 RISC-V 处理器,主频 400MHz,带通用的卷积神经网络单元(NPU),价格低性能高,既可以作为一个高端多核单片机,又可以作为人工智能芯片,应用前景广泛。
K210 的 KPU(Knowledge Processing Unit,知识处理单元)是通用神经网络处理器,内置卷积、批归一化、激活、池化运算单元,可以对人脸或物体进行实时检测。K210 可结合机器视觉和机器听觉能力提供更强大的功能。
人工智能和深度学习领域能应用于实时目标检测的网络不多,YOLO 卷积神经网络是其中之一,效果优良,并且已经得到了广泛应用。YOLO 可以一次性预测多个框位置和类别,实现端到端的目标检测和识别,其最大的优势是速度快。通过 YOLO,每张图像只需要看一眼就能得出图像中有哪些物体和这些物体的位置。
K210 人工智能芯片与 YOLO 卷积神经网络相结合,可以实现低成本的实时目标检测,这一点正是本书所要实现的目标。
本书结构
第一部分:RISC-V 及人工智能芯片。主要介绍 RISC-V 构架人工智能芯片 K210 应用开发,包括 RISC-V 构架及人工智能芯片 K210 介绍、输入/输出、串口通信、定时器与日历、音频输入/输出接口、显示屏驱动、摄像头数据采集、外部存储器、K210 的 WS2812 驱动、K210 的 ESP8266 驱动以及 K210 的 MicroPython 编程。
第二部分:深度学习。主要介绍 Keras 及 TensorFlow Lite 应用开发,包括 Keras 人工神经网络应用设计、Keras 卷积神经网络及深度学习、TensorFlow Lite 安卓应用开发。
第三部分:YOLOv3 目标检测。主要介绍 YOLOv1/v2/v3 深度卷积神经网络目标检测应用开发,包括 YOLO 网络与目标检测基础、YOLO 网络样本标注与训练、YOLO 网络结构分析、YOLO 网络在安卓中的应用。
第四部分:YOLO 和 K210 综合应用。主要介绍 K210 卷积神经网络应用实例,包括 K210人工神经网络应用设计、K210 卷积神经网络应用设计、K210 神经网络处理器工作原理分析、K210 神经网络处理器应用实例。
本书特点
本书较全面和完整地介绍和讲解 RISC-V 构架人工智能芯片 K210 的特点和应用开发方法。深入浅出地讲解人工神经网络、卷积神经网络的应用设计,特别是全面和深入分析 YOLO网络与目标检测方法,并把 YOLO 网络应用于 K210 之中。
本书每一章的编写方法都基本相同,首先介绍应用开发实例,从最简单的实例到较复杂的应用循序渐进地介绍,最后在每一章的后半部分再深入介绍其低层的工作原理。
本书源代码、教学课件可以扫描前言的二维码获取。
读者对象
本书适合于从事物联网、人工智能、嵌入式系统以及电子技术应用开发初学者作为参考资料,或者作为本专科物联网、人工智能、嵌入式系统、单片机等相关课程的教材,也适合于作为课程设计、毕业设计以及各类专业竞赛指导教材。
联系作者
对本书的程序代码、相关配套的 K210 开发板、控制模块、传感器模块、通信模块等有兴趣的读者,以及对本书相关知识感兴趣的读者,可以加入 QQ 群 AI_IoT(群号 784735940)交流、讨论和共同学习。
致谢
在本书的编写过程中,得到了嘉楠科技官方 K210 芯片负责人黄锐等相关人员以及WS2812 官方深圳市华彩威电子有限公司张少青的大力支持,在此表示衷心感谢。感谢蒙良桥、宋因建、殷徐栋、陈妍、张小珍、覃雪原、官玉恒、韦艳芳、覃玉龙、韦政、林宝玲、苏小艳、苏金秀分别审阅了本书的部分章节内容。
本书在编写过程中参考了大量的文献资料,一些资料来自互联网和非正式出版物,书后的参考文献无法一一列举,在此对原作者表示诚挚的谢意。
K210 官方公布的资料比较少,官方和网上的示例也比较少,因此本书在参考这些资料时可能会存在一些理解上的偏差和内容方面的不足。另外,由于作者水平有限,书中难免存在错误和疏漏之处,敬请读者批评指正。
编著者
短评
看了一下目录,还可以。
2020-07-06 14:24:32
又买了一批书,但是jd你不买到好几本都不给箱子装,毫无疑问,书坏了,不管是啥,都给你整坏,客户退换货就没有成本呗,一个箱子几个钱 可否增加个箱子服务,大热天累快递小哥,还得拿回去有意思吗,每次买书都充满压力
2020-07-21 20:02:00