我们现在生活在一个智能化的时代。数据和人工智能的魅力在于,任何一种信息都可以有数据化的表现形式。大数据为我们提供了一个宝库,而深度学习就是开启这个宝库的一把钥匙。60年前,当神经网络的概念初见雏形时,或许没有人能想到它会改变世界。如今,图像识别大赛上深度学习模型的准确度已经超越人类,人机对弈中阿尔法围棋取得胜利,谷歌的无人驾驶汽车投入商业运营,波士顿动力的机器人学会了奔跑、跳跃和后空翻……深度学习历经寒冬,走到聚光灯下,它既不是实验室中的空中楼阁,也不是计算机从业者的专利,所引领的人工智能变革关乎我们每一个人的生活体验和职业发展。
本书就是在这样的背景下产生的。拿到本书的你,无论是在校学习还是已经工作,无论是从事人工智能的研究还是关注着人工智能的发展,要想拥抱这个时代,就需要走进这一领域,在实践中找到应用场景并发挥其技术潜能。
对初学者而言,想掌握深度学习,就需要使用适合的编程语言以及简单易懂的框架。Python语言是当下深度学习领域的优选,而Keras在众多的深度学习框架中也是比较容易入门的,所以本书利用Python和Keras来学习深度学习方面的内容。
本书理论结合实践,详细介绍深度学习的基础理论以及相关的必要知识,同时讲解深度学习模型和代码。第1章介绍深度学习的基本概念、发展历程和应用领域。第2、3章介绍深度学习所需要的编程环境和基础知识。第4~6章介绍全连接神经网络,包括它的原理、在Keras中的实现和一些在实践中的优化建议。第7~9章介绍卷积神经网络,包括目前比较经典的卷积神经网络架构,如AlexNet、VGG-16、Inception和ResNet。第10章在卷积神经网络的基础上介绍迁移学习,这是一种训练和应用深度学习模型的常用方法。第11、12章介绍循环神经网络,并通过预测时间序列的例子讲解循环神经网络的应用。
本书资源可以登录机械工业出版社华章公司的网站(www.hzbook.com)下载,搜索到本书,然后在页面上的“资源下载”模块下载即可。如果下载有问题,请发送电子邮件至
[email protected]。
本书从开始编写到成稿历时一年,首先感谢父母的支持,同时感谢广汽研究院的裴锋和王玉龙,他们是我入行人工智能的领路人。由于编者经验有限,本书难免有疏漏之处,望各位读者不吝赐教。
刘文如
2020年1月10日