猜你喜欢
PySpark机器学习、自然语言处理与推荐系统

PySpark机器学习、自然语言处理与推荐系统

书籍作者:[印] 普拉莫德·辛格 ISBN:9787302540908
书籍语言:简体中文 连载状态:全集
电子书格式:pdf,txt,epub,mobi,azw3 下载次数:5713
创建日期:2021-02-14 发布日期:2021-02-14
运行环境:PC/Windows/Linux/Mac/IOS/iPhone/iPad/Kindle/Android/安卓/平板
内容简介

  使用PySpark构建机器学习模型、自然语言处理应用程序以及推荐系统,从而应对各种业务挑战。该书首先介绍Spark的基础知识及其演进,然后讲解使用PySpark构建传统机器学习算法以及自然语言处理和推荐系统的全部知识点。
  《PySpark机器学习、自然语言处理与推荐系统》阐释如何构建有监督机器学习模型,比如线性回归、逻辑回归、决策树和随机森林,还介绍了无监督机器学习模型,比如K均值和层次聚类。该书重点介绍特征工程,以便使用PySpark创建有用的特征,从而训练机器学习模型。自然语言处理的相关章节将介绍文本处理、文本挖掘以及用于分类的嵌入。
  在阅读完该书后,读者将了解如何使用PySpark的机器学习库构建和训练各种机器学习模型。此外,还将熟练掌握相关的PySpark组件,比如数据获取、数据处理和数据分析,通过使用它们开发数据驱动的智能应用。

作者简介

  普拉莫德·辛格(Pramod Singh),是Publicis.Sapient公司数据科学部门的经理,目前正作为数据科学跟踪负责人与梅赛德斯奔驰的一个项目进行合作。他在机器学习、数据工程、编程,以及为各种业务需求设计算法方面拥有丰富的实践经验,领域涉及零售、电信、汽车以及日用消费品等行业。他在Publicis.Sapient主导了大量应对机器学习和AI的战略计划。他在孟买大学获得了电气与电子工程的学士学位,并且在印度共生国际大学获得了MBA学位f运营&财务),还在IIM - Calcutta(印度管理学院加尔各答分校)获得了数据分析认证。在过去八年中,他一直在跟进多个数据项目。在大量客户项目中,他使用R、Python、Spark和TensorFlow应用机器学习和深度学习技术。他一直是各重大会议和大学的演讲常客。他会在Publicis.Sapient举办数据科学聚合并且定期出席关于ML和AI的网络研讨会。他和妻子以及两岁的儿子居住在班加罗尔。闲暇的时候,他喜欢弹吉他、写代码、阅读以及观看足球比赛。

编辑推荐
适读人群 :数据科学家、机器学习工程师

使用PySpark构建机器学习模型、自然语言处理应用程序以及推荐系统,从而应对各种业务挑战。本书首先介绍Spark的基础知识,然后讲解使用PySpark构建传统机器学习算法以及自然语言处理和推荐系统的全部知识点。

本书阐释了如何构建有监督机器学习模型,比如线性回归、逻辑回归、决策树和随机森林,还介绍了无监督机器学习模型,比如K均值和层次聚类。本书重点介绍特征工程,以便使用PySpark创建有用的特征,从而训练机器学习模型。自然语言处理的相关章节将介绍文本处理、文本挖掘以及用于分类的嵌入。

在阅读完本书之后,读者将了解如何使用PySpark的机器学习库构建和训练各种机器学习模型。此外,还将熟练掌握相关的PySpark组件,从而进行数据获取、数据处理和数据分析,开发数据驱动的智能应用。


前言

  随着人工智能的兴起,与之相关的知识和技术越来越受大众所关注,神经网络、机器学习、深度学习、自然语言处理等专业术语也开始为大家所广泛探讨。现在市面上可用的大数据处理分析甚或人工智能框架很多,所以对于刚入门或者想要入门的新手而言,选择一款合适的框架作为起步学习之用是非常重要的。
  作为目前处理和使用大数据的使用最广泛的框架之一,Spark已经被各大企业投入实际应用中。Spark是在Scala中设计的,以强大的处理速度和缓存能力见长,不过对于程序员来说,考虑到语法和标准库,Python相对来说更容易学习,而且Python是数据分析、机器学习等方面使用最广泛的编程语言之一。因此,为了支持Spark和Python,Apache Spark社区发布了PySpark,也就是说,PySpark是Spark的Python Shell。
  本书首先将介绍机器学习和Spark,然后会结合大数据进一步详细讲解机器学习,进而通过示例展示如何使用PySpark构建推荐系统和NLP。虽然是一本与机器学习有关的专业技术书籍,但本书内容浅显易懂,对于刚开始接触PySpark并且想要系统地理解PySpark基础知识结构以及相关算法的读者而言,本书将会是很好的入门指南。
  本书不仅涵盖与PySpark组件相关的知识,比如数据获取、数据处理和数据分析等,还讲解如何使用PySpark构建基础的机器学习算法和模型。相信在阅读完本书后,读者将获悉如何将PySpark用于工作实践之中,并且可以用来构建专业的人工智能应用。
  在此要特别感谢清华大学出版社的编辑们,在本书翻译过程中他们提供了颇有助益的帮助,没有他们的热情付出,本书将难以付梓。
  由于译者水平有限,难免会出现一些错误或翻译不准确的地方,如果读者能够指出并勘正,译者将不胜感激。

目录

第1章 数据革命
1.1 数据生成
1.2 Spark
1.2.1 Spark Core
1.2.2 Spark组件
1.3 设置环境
1.3.1 Windows
1.3.2 iOS
1.4 小结

第2章 机器学习简介
2.1 有监督机器学习
2.2 无监督机器学习
2.3 半监督机器学习
2.4 强化学习
2.5 小结

第3章 数据处理
3.1 加载和读取数据
3.2 添加一个新列
3.3 筛选数据
3.3.1 条件1
3.3.2 条件2
3.4 列中的非重复值
3.5 数据分组
3.6 聚合
3.7 用户自定义函数(UDF)
3,7.1 传统的Python函数
3.7.2 使用lambda函数
3.7.3 Pandas UDF(向量化的UDF)
3.7.4 Pandas UDF(多列)
3.8 去掉重复值
3.9 删除列
3.10 写入数据
3.10.1 csv
3.10.2 嵌套结构
3.11 小结

第4章 线性回归
4.1 变量
4.2 理论
4.3 说明
4.4 评估
4.5 代码
4.5.1 数据信息
4.5.2 步骤1:创建
SparkSession对象
4.5.3 步骤2:读取数据集
4.5.4 步骤3:探究式数据分析
4.5.5 步骤4:特征工程化
4.5.6 步骤5:划分数据集
4.5.7 步骤6:构建和训练线性回归模型
4.5.8 步骤7:在测试数据上评估线性回归模型
4.6 小结

第5章 逻辑回归
5.1 概率
5.1.1 使用线性回归
5.1.2 使用Logit
5.2 截距(回归系数)
5.3 虚变量
5.4 模型评估
5.4.1 正确的正面预测
5.4.2 正确的负面预测
5.4.3 错误的正面预测
5.4.4 错误的负面预测
5.4.5 准确率
5.4.6 召回率
5.4.7 精度
5.4.8 F1分数
5.4.9 截断/阈值概率
5.4.10 ROC曲线
5.5 逻辑回归代码
5.5.1 数据信息
5.5.2 步骤1:创建Spark会话对象
5.5.3 步骤2:读取数据集
5.5.4 步骤3:探究式数据分析
5.5.5 步骤4:特征工程
5.5.6 步骤5:划分数据集
5.5.7 步骤6:构建和训练逻辑回归模型
5.5.8 训练结果
5.5.9 步骤7:在测试数据上评估线性回归模型
5.5.10 混淆矩阵
5.6 小结
……
第6章 随机森林
第7章 推荐系统