书籍作者:[美] 特雷弗·哈斯蒂 | ISBN:9787302557395 |
书籍语言:简体中文 | 连载状态:全集 |
电子书格式:pdf,txt,epub,mobi,azw3 | 下载次数:7389 |
创建日期:2021-10-07 | 发布日期:2021-10-07 |
运行环境:PC/Windows/Linux/Mac/IOS/iPhone/iPad/Kindle/Android/安卓/平板 |
《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》在一个通用的概念框架中描述通用于数据挖掘、机器学习和生物信息学等领域的重要思想和概念。这些统计学范畴下的概念是人工智能与机器学习的基础。全书共18 章,主题包括监督学习、回归的线性方法、分类的线性方法、基展开和正则化、核光滑方法、模型评估和选择、模型推断和平均、加性模型、树和相关方法、Boosting 和加性树、神经网络、支持向量机和柔性判断、原型方法和最近邻、非监督学习、随机森林、集成学习、无向图模型和高维问题等。
《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》主题全面,是一本经典的统计学习教材,适合本科高年级学生和研究生使用和参考。
斯坦福大学统计学教授。三人是该领域的杰出研究人员。哈斯蒂在新泽西州的AT&T贝尔实验室以技术人员身份工作9年之后,于1994年8月加入斯坦福大学任教。哈斯蒂用S-PLUS写了许多统计建模软件,并发明了主要曲线和曲面。他和提布施拉尼共同开发了广义加性模型并写了这一主题的热门书。提布施拉尼提出了Lasso,参与创作了《Bootstrap概论》,这本书取得了相当大的成功。弗雷曼是许多数据挖掘工具的共同发明人,包括CART、MARS、投影追踪和梯度Boosting。
译者简介
张军平
复旦大学计算机科学技术学院教授,博导,主要研究方向是人工智能、机器学习、生物认证和智能交通。曾经主持多个国j级项目。他是人工智能著名期刊 IEEE Intelligent Systems 编委,担任《软件学报》和《自动化学报》等国内权威期刊责任编辑。他是中国自动化学会混合智能专业委员会副主任。他在人工智能及相关专业领域发表了100余篇论文,包括 IEEE TPAMI,TNNLS,ToC,TAC和TITS等期刊以及ICML, AAAI和 ECCV等国际会议上。他的人工智能科普畅销书《爱犯错的智能体》荣获了2019年中国自动化学会科普奖。2020年中国科普作家协会第六届优秀作品奖(中国科普创作领域z高奖)金奖以及2020年第十届吴文俊人工智能科技进步奖(科普项目)。
很好,很权威专业的一本书,值得好好学习和研究
2021-02-15 14:32:41
不错,挺好的
2021-02-02 17:29:33