猜你喜欢
图解机器学习

图解机器学习

书籍作者:杉山将 ISBN:9787115388025
书籍语言:简体中文 连载状态:全集
电子书格式:pdf,txt,epub,mobi,azw3 下载次数:2410
创建日期:2021-02-14 发布日期:2021-02-14
运行环境:PC/Windows/Linux/Mac/IOS/iPhone/iPad/Kindle/Android/安卓/平板
内容简介
《图解机器学习》用丰富的图示,从ZUI小二乘法出发,对基于ZUI小二乘法实现的各种机器学习算法进行了详细的介绍。第Ⅰ部分介绍了机器学习领域的概况;第Ⅱ部分和第Ⅲ部分分别介绍了各种有监督的回归算法和分类算法;第Ⅳ部分介绍了各种监督学习算法;第Ⅴ部分介绍了机器学习领域中的新兴算法。书中大部分算法都有相应的MATLAB程序源代码,可以用来进行简单的测试。
作者简介
杉山将,1974年生于大阪。东京工业大学计算机工程学博士毕业,现为东京大学教授、日本国立信息学研究所客座教授。主要从事机器学习的理论研究和算法开发,以及在信号和图像处理等方面的应用。2011年获日本信息处理学会长尾真纪念特别奖。著有《统计机器学习》、DensityRatioEstimationinMachineLearning等。同时也是PatternRecognitionandMachineLearning日文版的译者之一。

  许永伟,2009年赴东京大学攻读博士学位,现于东京大学空间信息科学研究所从事博士后研究(特任研究员)。主要研究方向为模式识别与机器学习、图像处理与计算机视觉,对数据挖掘、大数据和信息架构有浓厚兴趣。
编辑推荐
187张图解轻松入门
  提供可执行的Matlab程序代码
  覆盖机器学习中经典、用途广的算法
  专业实用
  东京大学教授、机器学习专业专家执笔,浓缩机器学习的关键知识点
  图文并茂
  187张图示帮助理解,详略得当,为读懂大部头开路。
  角度新颖
  实战导向
  配有可执行的MATLAB程序代码,边学习边实践。

前言
机器学习领域是深不可测的吗?人工智能是天方夜谭吗?时至今日,机器学习研究的重要性与可行性已得到广泛承认,并在模式识别、通信、控制、金融、机器人、生物信息学等许多领域都有着广泛的应用。
  如何自动归类筛选邮件和网页?如何向大家推荐你可能感兴趣的人?如何预测整体市场行情的好坏?如何从统计学的角度对照片进行归类?本书就介绍了这样一些算法。
  如果想得到最通俗、简洁的讲解,本书最为合适。
  如果想立即知道算法的性能,并期望有可运行的源代码,本书最为方便。
  很多人都是看着日本的动画长大的。殊不知,大部分日本人都具有熟练的绘画能力。他们总可以把复杂、枯燥的事物用惟妙惟肖的漫画生动地表达出来。广告、网页、海报,甚至政府公告都图文并茂。市面上也有不计其数的“图解……”“图说……”一类的书籍。本书就是其中一例,这也是本书的最大特点。
  杉山将博士今年赴任东京大学教授,他在机器学习领域颇有建树。他的研究室吸引了来自世界各地的机器学习研究者。本书承袭了日本特有的绘画特色,依靠作者丰富的机器学习经验,用最精简的文字,将原本复杂抽象的数学原理,用形象的漫画与数据图形进行了清晰的说明。作者也将最前沿和最核心的研究成果汇集到了本书之中。
  本书的侧重点不在于机器学习原理的相关推导,而在于结论的分析和应用。读者朋友可以更快地掌握各种算法的特点和使用方法,提纲挈领地消化应用,而不必拘泥于算法的细节不能自拔。另外,本书旁征博引,图文并茂,结构清晰,范例实用丰富,深入浅出地说明了机器学习中最典型和用途最广泛的算法。
  本书内容覆盖面广,不但与市面上众多的机器学习书籍并无重复,更可与其互为补充。大部分算法都有简洁、现成的MATLAB源代码,读者朋友可以轻松地进行验证。以此为原型,再稍加修改扩充,即可做出为自己所用的项目代码。
  机器学习领域日新月异,书中所涉及的概念和术语数目繁多,且有许多概念和术语目前尚无公认的中文译法。如果有不合读者朋友习惯的术语出现,请参考译者注,确认其原始词意。
  本译稿得到了图灵公司编辑的悉心指导,她们为保证本书的质量做了大量的补译、校正及编辑工作,在此表示深深的谢意。
  许永伟
  2014年12月于东京

目录
第I部分 绪 论
第1章 什么是机器学习
1.1 学习的种类
1.2 机器学习任务的例子
1.3 机器学习的方法
第2章 学习模型
2.1 线性模型
2.2 核模型
2.3 层级模型
第II部分 有监督回归
第3章 最小二乘学习法
3.1 最小二乘学习法
3.2 最小二乘解的性质
3.3 大规模数据的学习算法
第4章带有约束条件的最小二乘法
4.1 部分空间约束的最小二乘学习法
4.2 l2 约束的最小二乘学习法
4.3 模型选择
第5章 稀疏学习
5.1 l1 约束的最小二乘学习法
5.2 l1 约束的最小二乘学习的求解方法
5.3 通过稀疏学习进行特征选择
5.4 lp约束的最小二乘学习法
5.5 l1+l2 约束的最小二乘学习法
第6章 鲁棒学习
6.1 l1 损失最小化学习
6.2 Huber损失最小化学习
6.3 图基损失最小化学习
6.4 l1 约束的Huber损失最小化学习
第III部分 有监督分类
第7章 基于最小二乘法的分类
7.1 最小二乘分类
7.2 0/1 损失和间隔
7.3 多类别的情形
第8章 支持向量机分类
8.1 间隔最大化分类
8.2 支持向量机分类器的求解方法
8.3 稀疏性
8.4 使用核映射的非线性模型
8.5 使用Hinge损失最小化学习来解释
8.6 使用Ramp损失的鲁棒学习
第9章 集成分类
9.1 剪枝分类
9.2 Bagging学习法
9.3 Boosting 学习法
第10章 概率分类法
10.1 Logistic回归
10.2 最小二乘概率分类
第11 章序列数据的分类
11.1 序列数据的模型化
11.2 条件随机场模型的学习
11.3 利用条件随机场模型对标签序列进行预测
第IV部分 监督学习
第12章 异常检测
12.1 局部异常因子
12.2 支持向量机异常检测
12.3 基于密度比的异常检测
第13章 监督降维
13.1 线性降维的原理
13.2 主成分分析
13.3 局部保持投影
13.4 核函数主成分分析
13.5 拉普拉斯特征映射
第14章 聚类
14.1 K均值聚类
14.2 核K均值聚类
14.3 谱聚类
14.4 调整参数的自动选取
第V部分 新兴机器学习算法
第15章 在线学习
15.1 被动攻击学习
15.2 适应正则化学习
第16章 半监督学习
16.1 灵活应用输入数据的流形构造
16.2 拉普拉斯正则化最小二乘学习的求解方法
16.3 拉普拉斯正则化的解释
第17章 监督降维
17.1 与分类问题相对应的判别分析
17.2 充分降维
第18章 迁移学习
18.1 协变量移位下的迁移学习
18.2 类别平衡变化下的迁移学习
第19章 多任务学习
19.1 使用最小二乘回归的多任务学习
19.2 使用最小二乘概率分类器的多任务学习
19.3 多次维输出函数的学习
第VI部分 结 语
第20章 总结与展望
参考文献

短评

好难,好复杂。

2015-12-05

大部分内容是公式,图解只是噱头,看了也没有什么帮助

2015-09-19

这本书本身的内容,非常精妙!失败是在文案:这绝非入门书,甚至不能叫图解。最贴切的书名应该是《统计学习,从最小均方误差说开去》。私以为,入门机器学习途径有二,一是受深度学习感召,从感知器始,再来输入/单隐层/输出的标准神经网络结构,到多层感知器,再由自动编码、RNN和CNN渐入DNN家族,这种宏观视野有助于建立“模型-优化算法-准则”的机器学习大观。另一条是从统计入手,贝叶斯-似然估计-均方误差-线性判别-支持向量,推而广之到集成、度量学习、降维等,以代数与统计为主,从公式推演。本书是罕见的后一条路,起点不低,LS直接上核,给的第一个公式概括性极强,看出作者厚积薄发,但不适合初学!!!倒是已对整个ML领域走一圈回头读会醍醐灌顶。另外,一些术语(日语译法)和常用的不一致,但不影响理解。

2016-08-12

有点意思,写的很精简,但是没听过课,去读又难理解

2015-12-24

尼玛都没图这也叫图解?公式贼多。建议看《机器学习实战》

2015-06-08

图解机器学习的书评

需要数学功底,零基础一样无法入门

很多数学公式,比起教科书强了那么一点。 如果没有概率基础,没有行列式基础,那么看书一样很吃力。 当然,只要坚持刨根问底,不去推导公式,仅仅理解一下还是有用的。 记得微软的一个机器学习类库,有个讲侦探的.........

2015-10-06 21:51

可以当作一本小字典迅速浏览

说图解不太合适,其实大多只是正文插入了几张萌图。 如果你一点数学都不懂,想看图学会,那肯定要大失所望的。 书很小很薄,定价似乎稍高了点,不过主要的东西也都有了,简要介绍理论之后给出matlab代码,可以.........

2016-05-29 05:17

标签
机器学习,数据挖掘,计算机,计算机科学,编程,科普,人工智能,软件工程
产品特色