猜你喜欢
卓里奇数学分析教程 第1卷(第2版)

卓里奇数学分析教程 第1卷(第2版)

书籍作者:Vladimir ISBN:9787519296612
书籍语言:简体中文 连载状态:全集
电子书格式:pdf,txt,epub,mobi,azw3 下载次数:9767
创建日期:2023-05-08 发布日期:2023-05-08
运行环境:PC/Windows/Linux/Mac/IOS/iPhone/iPad/Kindle/Android/安卓/平板
内容简介

 

内容简介

《卓里奇数学分析教程》是作者在莫斯科大学力学数学系从60年代开始教授数学分析课程不断积累的基础上写成的,自1981年第1版出版以来,已畅销全球40年,并在一直修订增补。在此教程中作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中非常有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。

《卓里奇数学分析教程》共两卷,第1卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。

《卓里奇数学分析教程》观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。这套教程书可作为综合性大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。


作者简介

作者简介

弗拉基米尔·卓里奇(Vladimir A. Zorich)是莫斯科国立大学教授,主要从事分析、保角几何、拟共形映照方面的研究工作。他解决了空间拟共形映照下的球面同胚问题,并因该研究成果获得了“青年数学家国家奖”。作为莫斯科国立大学数学力学系高级实验课程的组织者之一,他在一些大学中开设并教授现代分析学课程,并发表了大量的数学研究成果。


编辑推荐

编辑推荐

本书是世图“俄罗斯数学经典”书系中的一种,被沃尔夫奖得主、俄罗斯科学院院士阿诺尔德(V. I. Arnold)誉为是现有数学分析现代教材的best。与其他数学分析教科书相比,它更多地运用了现代数学(包括代数学、几何学和拓扑学)的思想和方法,而且也更贴近自然科学(特别是物理学和力学)的应用。本书被清华大学数理基础科学班精品课程选用为授课教材。


前言
Science has not stood still in the years since the first English edition of this book was published. For example, Fermat's last theorem has been proved, the Poincare conjecture is now a theorem, and the Higgs boson has been discovered. Other events in science, while not directly related to the contents of a textbook in classical mathematical analysis, have indirectly led the author to learn something new, to think over something familiar, or to extend his knowledge and understanding. All of this additional knowledge and understanding end up being useful even when one speaks about something apparently completely unrelated.
  In addition to the original Russian edition, the book has been published in English, German, and Chinese. Various attentive multilingual readers have detected many errors in the text. Luckily, these are local errors, mostly misprints. They have assuredly all been corrected in this new edition.
  But the main difference between the second and first English editions is the addition of a series of appendices to each volume. There are six of them in the first and five of them in the second. So as not to disturb the original text, they are placed at the end of each volume. The subjects of the appendices are diverse. They are meant to be useful to students (in mathematics and physics) as well as to teachers, who may be motivated by different goals. Some of the appendices are surveys, both prospective and retrospective. The final survey contains the most important conceptual achievements of the whole course, which establish connections between analysis and other parts of mathematics as a whole.
目录

图书目录

Prefaces

1. Some General Mathematical Concepts and Notation

2. The Real Numbers

3. Limits

4. Continuous Functions

5. Differential Calculus

6. Integration

7. Functions of Several Variables

8. Differential Calculus in Several Variables

Some Problems from the Midterm Examinations

Examination Topics

Appendix A. Mathematical Analysis (Introductory Lecture)

Appendix B. Numerical Methods for Solving Equations (An Introduction)

Appendix C. The Legendre Transform (First Discussion)

Appendix D. The Euler-Maclaurin Formula

Appendix E. Riemann-Stieltjes Integral, Delta Function, and Generalized Functions

Appendix F. The Implicit Function Theorem (An Alternative Presentation)

References

Subject Index

Name Index


短评

英文版卓里奇的数学分析,买回来收藏一下。之前学的时候给了我极大的震撼,尤其是第二册,实在是难啃,学完整个人感觉

2022-10-26 08:07:14